Multiscale convergence properties for spectral approximations of a model kinetic equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale convergence properties for spectral approximations of a model kinetic equation∗†

In this work, we prove rigorous convergence properties for a semi-discrete, moment-based approximation of a model kinetic equation in one dimension. This approximation is equivalent to a standard spectral method in the velocity variable of the kinetic distribution and, as such, is accompanied by standard algebraic estimates of the form N−q, where N is the number of modes and q > 0 depends on th...

متن کامل

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

Convergence of a Kinetic Equation to a Fractional Diffusion Equation

The understanding of thermal conductance in both classical and quantum mechanical systems is one of the fundamental problems of non-equilibrium statistical mechanics. A particular aspect that has attracted much interest is the observation that autonomous translation invariant systems in dimensions one and two exhibit anomalously large conductivity. The canonical example here is a chain of anhar...

متن کامل

Convergence of Galerkin Approximations for the Korteweg - de Vries Equation

Standard Galerkin approximations, using smooth splines on a uniform mesh, to 1-periodic solutions of the Korteweg-de Vries equation are analyzed. Optimal rate of convergence estimates are obtained for both semidiscrete and second order in time fully discrete schemes. At each time level, the resulting system of nonlinear equations can be solved by Newton's method. It is shown that if a proper ex...

متن کامل

Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

In multiscale models of heterogeneous catalysis, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. This usually is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2018

ISSN: 0025-5718,1088-6842

DOI: 10.1090/mcom/3399